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Abstract

Passive hydraulic engine mounts differ from mechanical isolators in several ways. Complex poles and zeros suggest that

the hydraulic mount has at least one mass (inertia) element even at low frequencies. This would suggest thus that the

constraint forces at its input and output ends are not identical; but they are indeed, like any conventional spring.

Accordingly, analogous mechanical models of hydraulic mounts, consisting of spring, dashpot and mass elements, could

lead to incorrect results in the context of system analysis. Examples clarify the competing model paradigms and their

interpretation.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Static and dynamic properties of passive hydraulic engine mounts have been widely studied using
experimental and analytical methods [1–12] but their incorporation into system models (such as Fig. 1(a) that
depicts a simple vehicle model at low frequencies) is not well understood and somewhat open to interpretation
for several reasons. First, mounts are typically characterized by a non-resonant (electro-hydraulic) dynamic
test in terms of the dynamic transfer stiffness Kðo;X Þ ¼ FT=X at given angular excitation frequency o (rad/s)
and displacement amplitude X, under a specific static load fs (or displacement); here FT is the force transmitted
to the blocked base at o only though other frequencies might be present. Second, mathematical simulations of
the mount (alone) are usually developed using lumped fluid models [6,7], such as the one shown in Fig. 1(b).
True mechanical (or visco-elastic) analogs of either experimental or analytical treatment cannot be found. Yet,
researchers and practitioners have adopted some simplified or even ‘‘user friendly’’ treatments. The chief goal
of this communication is to comparatively evaluate competing models at low frequencies (up to 50Hz) by
assuming that the mount (as a component) behaves as a linear time-invariant system. We will also compare the
system response properties on the basis of eigensolutions, and frequency and impulse responses in order to
clarify some paradoxes or paradigms.

Fig. 1 illustrates competing approaches based on fluid models, analogous mechanical models [1–3], and
transfer function formulations [1–6]. In the context of a simplified engine-mount-chassis system, me and mc are
the masses of engine and chassis, respectively; kc and cc are the stiffness and damping coefficient of chassis; xe
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. Engine-mount-chassis system and competing mount models: (a) engine-mount-chassis system, (b) fluid model, (c) mechanical

model, (d) transfer function model.
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and xc are the displacements of engine and chassis; fe and fc are the forces applied to engine and chassis. For
the fluid model in Fig. 1(b), kr and cr are the stiffness and damping coefficient of the rubber part, respectively;
Cu and C‘ are the (linearized) fluid compliances of upper (]u) and lower (]‘) chambers; qi(t) and qd(t) are the
volumetric flow rates through the inertia track (]i) and decoupler (]d); Ii and Id are the inertias of fluid
columns; Ri and Rd are the (linearized) fluid resistances.

2. Some unique aspects of hydraulic mounts (at low frequencies)

Fig. 2 shows the transfer stiffness of the hydraulic mount measured (solid line) under a large amplitude
excitation of 2.0mm (peak to peak) while being subject to a specific static load corresponding to the engine
weight, where strongly spectrally-varying stiffness and damping characteristics due to the so-called inertia
track dynamics [8] can be observed. Dashed lines in Fig. 2 represent the predictions based on the following
stiffness formulation in the Laplace (s) domain (with three zeros given by z’s and two poles given by p’s
at low frequencies) where a is a real-valued constant.

KH ðsÞ ¼ a
ðs� z1Þðs� z2Þðs� z3Þ

ðs� p1Þðs� p2Þ
. (1)
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Fig. 2. Measurement of complex-valued transfer stiffness of a typical hydraulic mount: (a) real part, (b) imaginary part. Key: —

measurement; – – prediction based on Eq. (1).
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Observe that Eq. (1) is in excellent agreement with measurements. Generally, complex poles suggest that the
conventional isolator has an embedded mass element. It is in accord with the fact that the fluid mass in the
inertia track plays a crucial role in the low-frequency dynamics [9]. However, dynamic response of hydraulic
mounts is quite different from that of a conventional mechanical isolator (consisting of spring, dashpot and
mass elements). Yet, one of the key features of a massless isolator is that the magnitudes of forces at its input
and output sides remain unchanged and thus the conventional isolators (consisting of any combinations of
only springs and dashpots) must retain the stiffness matrix in the same form as long as no mass element is
included. In other words, an isolator can always be regarded as a spring of equivalent stiffness Keq.
Paradoxically, typical hydraulic mount tends to behave like a spring element of equivalent stiffness even
though they possess complex poles. For instance, the measurements [9] of four elements of the stiffness matrix,
K11, K12, K21, and K22, for the hydraulic mount (as shown below) indicate that it behaves like a spring of
equivalent stiffness KH(s) where 1 and 2 refer to the input and output ends respectively as shown in Fig. 1(d).

K ¼
K11 K12

K21 K22

" #
¼ KH ðsÞ

1 �1

�1 1

� �
. (2)
3. Features of an analogous mechanical isolator with a mass element

Several mechanical models like Fig. 1(c), or their variants, have been employed to represent strongly
frequency-dependent characteristics of hydraulic mounts. In Fig. 1(c), F and V are the force and velocity
amplitudes at o, respectively, and subscripts 1 and 2 mean the input and output ends. The force sign at the
output end is opposite to that of the conventional mechanical four-pole parameter theory [13] so that its
stiffness matrix can be brought to the same form as Eq. (2) in terms of equivalent stiffness of the isolator.
The constraint forces at the input and output ends (at o) are as follows where j ¼

ffiffiffiffiffiffiffi
�1
p

:

F1 ¼
kr

jo
þ cr

� �
ðV1 � V 2Þ þ

ku

jo
ðV1 � V ieÞ, (3)

F2 ¼
kr

jo
þ cr

� �
ðV2 � V 1Þ þ cieðV 2 � V ieÞ. (4)
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And the governing equation of the mass element (at o) is expressed as follows where ku, mie, and cie are,
respectively, defined as ku ¼ A2

p=Cu, mie ¼ A2
pI i, cie ¼ A2

pRi [10]; here Ap is the effective rubber (piston) area:

jomieVie þ cieðVie � V 2Þ þ
ku

jo
ðV ie � V1Þ ¼ 0. (5)

Combining Eqs. (3)–(5) leads to F1 ¼ �F 2 þ jomieVie. That is the magnitude of force at the input end of an
isolator (with at least one mass element). Therefore, the mechanical model with a lumped mass (mie) cannot be
given by an equivalent stiffness matrix of Eq. (2). Actually, the stiffness matrix of the mechanical model is
written as follows:

K ¼

kr þ jocr þ ku

jocie � o2mie

ku � o2mie þ jocie

� kr þ jocr þ
jocieku

ku � o2mie þ jocie

� �

� kr þ jocr þ
jocieku

ku � o2mie þ jocie

� �
kr þ jocr þ jocie

ku � o2mie

ku � o2mie þ jocie

2
6664

3
7775. (6)

Eq. (6) clearly shows that one transfer stiffness term (K12 or K21) is not sufficient to represent the dynamic
behavior of an isolator with a lumped mass. The four-pole parameters are also expressed as

F 1

V 1

( )
¼

a11 a12

a21 a22

" #
F2

V2

( )

¼

�
ðkr þ jocrÞðku � o2mie þ jocieÞ

þkuðjocie � o2mieÞ

 !
jomie

ðkr þ jocrÞðku þ jocieÞ

þjocieku

 !

�joðku � o2mie þ jocieÞ
ðkr þ jocrÞðku � o2mie þ jocieÞ

þjocieðku � o2mieÞ

 !

2
6666664

3
7777775

ðkr þ jocrÞðku � o2mie þ jocieÞ þ jocieku

F2

V 2

( )
. ð7Þ

Observe in Eq. (7) that the mechanical model shows an asymmetry, given by �a11 6¼a22. In contrast, the
hydraulic mount displays symmetry, i.e. the mount behaves in the same way when its input (1) and output (2)
ends are interchanged. Accordingly, it should be noted that the mechanical model is not true equivalent of the
hydraulic mount even though their driving-point stiffness expressions on the input side are identical.

4. Vehicle system example and conclusion

When both ends of the mount move in a dynamic system, an analogous mechanical model could transmit
the wrong force. Further, the modal analysis might not be correct [10]. To critically examine whether the
analogous mechanical models can faithfully represent dynamic response of any hydraulic mount, consider the
system of Figs. 1(a) and (c). The governing equations are as follows where the subscript M denotes the
mechanical model:

MM €xM þ CM _xM þ KMxM ¼ fM , (8a)

where the matrices MM, CM, KM, and the vectors xM and fM are defined as

MM ¼

mc 0 0

0 me 0

0 0 mie

2
64

3
75, (8b)

CM ¼

cc þ cr þ cie �cr �cie

�cr cr 0

�cie 0 cie

2
64

3
75, (8c)
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KM ¼

kc þ kr �kr 0

�kr kr þ ku �ku

0 �ku ku

2
64

3
75, (8d)

xM ¼

xc

xe

xie

8><
>:

9>=
>;, (8e)

fM ¼

f c

f e

0

8><
>:

9>=
>;. (8f)

Next, consider the system of Figs. 1(a) and (d) that incorporates the transfer function model of the hydraulic
mount (based on the fluid formulation or complete measured data). Introduce an internal force fH of a spring
of equivalent stiffness KH(s) and write the corresponding equations of motion and associated matrices or
vectors (with subscript T) as follows; see Appendix A for the expressions of C31, C32, C33, K31, K32, K33, B131,
B132, B031, and B032 (based on the fluid model).

MT €xT þ CT _xT þ KTxT ¼ B1
_fT þ B0fT , (9a)

MT ¼

mc 0 0

0 me 0

0 0 mie

2
64

3
75, (9b)

CT ¼

cc 0 0

0 0 0

C31 C32 C33

2
64

3
75, (9c)

KT ¼

kc 0 �1

0 0 1

K31 K32 K33

2
64

3
75, (9d)

B1 ¼

0 0

0 0

B131 B132

2
64

3
75 ¼ B11 B12

� �
, (9e)

B0 ¼

1 0

0 1

B031 B032

2
64

3
75 ¼ B01 B02

� �
, (9f)

xT ¼

xc

xe

f H

8><
>:

9>=
>;, (9g)

fT ¼
f c

f e

( )
. (9h)

By solving the complex eigenvalue problem of dimension 6, the frequency response functions (Hrq), at the
rth coordinate due to unit Gaussian (White) random excitation at the qth coordinate with no other inputs at
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any other coordinates, are written as follows for the models of Figs. 1(c) and (d) using subscripts M and T,
respectively [14]:

HMrqðoÞ ¼
X6
i¼1

vMiquMir

jo� lMi

, (10a)

HTrqðoÞ ¼
X6
i¼1

jo
jo� lTi

ðvTTiB1qÞuTir þ
X6
i¼1

1

jo� lTi

ðvTTiB0qÞuTir, (10b)

where li is the ith eigenvalue, viq is the qth element of the ith left eigenvector vi and uir is the rth element of the
ith right eigenvector ui; B1q and B0q are the qth column vectors of B1 and B0, respectively. The superscript T
denotes the transpose. The terms with B1q can be easily derived from the corresponding terms with B0q by
differentiation. The corresponding impulse response functions for both models are expressed as follows where
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Fig. 3. System responses obtained by using mechanical and transfer function models: (a) frequency response spectra (Xc/Fc) (o), (b)
harmonic response xe(t). Key: — transfer function model of Fig. 1(d); – – mechanical model of Fig. 1(c).
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U(t) is the unit step function and d(t) is the Dirac delta function.

hMrqðtÞ ¼
X6
i¼1

vMiquMire
lMitUðtÞ,

hTrqðtÞ ¼
X6
i¼1

ðvTTiB1qÞuTirflTiUðtÞ þ dðtÞgelTit þ
X6
i¼1

ðvTTiB0qÞuTire
lTitUðtÞ.

Further, if the harmonic excitation at o0 rad/s in the form of sin (o0t)U(t) were to be applied to the engine
me, the harmonic responses for both models would yield by convolution integral:

xeM ðtÞ ¼
X6
i¼1

vMi2uMi2
o0e

lMit � lMi sin o0t� o0 cos o0t

o2
0 þ l2Mi

UðtÞ, (11a)

xeT ðtÞ ¼
X6
i¼1

ðvTTiB12ÞuTi2o0
lTie

lTit þ o0 sin o0t� lTi cos o0t

o2
0 þ l2Ti

UðtÞ

þ
X6
i¼1

ðvTTiB02ÞuTi2
o0e

lTit � lTi sin o0t� o0 cos o0t

o2
0 þ l2Ti

UðtÞ. ð11bÞ

For the sake of illustration, consider the following typical values: mc ¼ 120kg, me ¼ 100kg, kc ¼ 401.1N/mm,
cc ¼ 256N s/m, mie ¼ 11.9 kg, cie ¼ 492N s/m, kr ¼ 167.6N/mm, ku ¼ 112.2N/mm, and cr ¼ 146N s/m. The
resulting complex eigenvalues for both models are: lM ¼ �1.387j30.8, �7.427j74.0, �16.37j99.1; and,
lT ¼ �1.427j31.8, �8.127j64.8, �13.57j110. Thus, one can confirm that the mechanical model yields the
wrong eigensolutions. Fig. 3 shows the frequency response functions (based on Eq. (10)) and harmonic
responses at o0 ¼ 2p � 15 rad/s (based on Eq. (11)). Results clearly show why the mechanical model must not
be employed in a system where both ends of the hydraulic mount move. It is noted here that the mechanical
model could indeed work if one end of the hydraulic mount is somehow fixed (say to a massive inertial base);
this suggests that only the driving-point stiffness of the mechanical model would then dictate the dynamic
behavior.
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Appendix A. Expressions of Eq. (9) for the system of Figs. 1(a) and (d)

C31 ¼ miecr

c2c �mckc

m2
c

� ðciecr þ krmie þ kumieÞ
cc

mc

þ ðcrku þ krcie þ kucieÞ,

C32 ¼ �ðcrku þ krcie þ kucieÞ; C33 ¼ cie þmiecr

1

mc

þ
1

me

� �
, ðA:1Þ

K31 ¼ miecr

cckc

m2
c

þ krku � ðciecr þ krmie þ kumieÞ
kc

mc

,

K32 ¼ � krku; K33 ¼ ku � cccr

mie

m2
c

þ ðciecr þ krmie þ kumieÞ
1

mc

þ
1

me

� �
, ðA:2Þ
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B131 ¼ �
miecr

mc

; B132 ¼
miecr

me

,

B031 ¼
miecrcc

m2
c

�
ciecr þ krmie þ kumie

mc

; B032 ¼
ciecr þ krmie þ kumie

me

. ðA:3Þ
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